Tectonic Transition from Passive to Active Continental Margin of Nenjiang Ocean: Insight from the Middle Devonian-Early Carboniferous Granitic Rocks in Northern Great Xing’an Range, NE China

Author:

Zhang Li123,Ma Yongfei12,Liu Yongjiang45ORCID,Yuan Sihua12,Yang Hongzhi3,Li Weimin6,Liang Chenyue6ORCID,Feng Zhiqiang7

Affiliation:

1. College of Earth Sciences, Institute of Disaster Prevention, Sanhe 065201, China

2. Hebei Key Laboratory of Earthquake Dynamics, Sanhe 065201, China

3. Shenyang Center of Geological Survey, China Geological Survey, Shenyang 110034, China

4. Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geoscience and Prospecting Techniques, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China

5. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

6. College of Earth Sciences, Jilin University, Changchun 130061, China

7. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

Northeast China occupies the majority of the eastern Central Asian Orogenic Belt, which mainly consists of continental blocks and accretionary terranes. The Devonian was a tectonic quiet period in the NE China region due to a lack of tectono-magmatism, but the tectonic background of this period has been unclear, especially for the Hegenshan-Heihe Suture between Xing’an and Songliao accretionary terranes, which represents the Paleozoic Nenjiang Ocean (a branch ocean of the eastern Paleo-Asian Ocean). Here we report granitic rocks from the Woluohe area, Northern Great Xing’an Range, NE China, to constrain the tectonic process of the transition from the Devonian quiet period to the Early Carboniferous active tectonic period. Three granitic rock samples produce zircon U-Pb ages of 389 Ma, 368 Ma, and 351 Ma, belonging to the Middle and Late Devonian and Early Carboniferous, respectively. They have high Si, Al, K, and Na contents, but with low Mg, Fe, and Ti contents, together with positive Hf isotopic features and low molar Al2O3/(MgO+FeOT) ratios, we suggest that they were derived from partial melting of lower crustal igneous rocks. Meanwhile, the narrow major element variation at odd with the fractionation process and their negative Nb and Ta anomalies imply the obvious contribution of crustal. Comprehensive tectonic setting analysis shows all samples are in calc-alkali magmatic series with rightward fractionated REE and trace element patterns that are enriched in LREE and LILE and depleted in HREE and HFS, indicating a subduction-related magmatic arc setting. Considering the regional tectonic setting and the small scale of the Devonian plutons, we suggest a limited subduction tectonic setting during the quiet period of the northern Great Xing’an Range, which might indicate the beginning of an initial northwestward subduction of the Nenjiang Oceanic lithosphere beneath the Xing’an Accretionary Terrane in the Middle Devonian, accelerated subduction in the Late Devonian, and bidirectional subduction in the Early Carboniferous.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Geological Survey Project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3