Single-Grain Detrital Apatite Sr Isotopic Composition as an Indicator to Trace Sedimentary Sources: A Case Study of Sedimentary Rocks in the Hui-Cheng Basin, South Qinling, China

Author:

Ye Risheng1,Zhao Jingxin1,Wang Zhiyi1,Li Weiyong1,He Jun1ORCID,Chen Fukun1

Affiliation:

1. CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

Abstract

Sediments or clastic rocks can record the evolution history of basins, orogenic processes, crustal uplift and erosion, and even paleo-environments. Detrital minerals such as zircon, garnet, and apatite are useful media for studies of sedimentary sources and basin evolution. Detrital zircon has been widely taken as an indicator for provenances and tectonic evolution of geological terrenes via age distribution patterns. Apatite can remain stable during erosion and transportation and is also considered as an ideal object for source tracing. This mineral normally contains high Sr and negligible Rb. Its Sr isotopic composition can remain almost unchanged after crystallization. Unlike isotopic ages of detrital minerals, Apatite isotopic compositions have been less frequently used for tracing the provenance of sedimentary rocks in the last few decades. In the present study, we report on the Sr isotopic composition of individual apatite grains of Neogene and Jurassic conglomerates from the Hui-Cheng basin in the South Qinling orogenic belt, obtained via thermal ionization mass spectrometry. Detrital apatite grains of Jurassic rocks have narrow ranges of 87Sr/86Sr values from 0.7076 to 0.7100, but those of Neogene rocks gave variant 87Sr/86Sr values from 0.7055 to 0.7534, providing distinct evidence for complex sources of Neogene sedimentary rocks. Analytical results show that the distribution patterns of 87Sr/86Sr values of single-grain detrital apatite fit the distribution patterns of detrital zircon U-Pb from the isotopic ages very well. Detrital apatite Sr isotopic composition can provide essential information for tracing the origins and evolution of sedimentary sources.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3