Store-Operated Calcium Entry Increases Nuclear Calcium in Adult Rat Atrial and Ventricular Cardiomyocytes

Author:

Hermes Julia1,Borisova Vesela12,Kockskämper Jens1ORCID

Affiliation:

1. Institute for Pharmacology and Clinical Pharmacy, Biochemical and Pharmacological Centre (BPC) Marburg, University of Marburg, Karl-von-Frisch-Str. 2 K|03, 35043 Marburg, Germany

2. Department of Pharmacology and Clinical Pharmacology and Therapeutics, Medical University of Varna, Varna 9002, 55 Marin Drinov str., Bulgaria

Abstract

Store-operated calcium entry (SOCE) in cardiomyocytes may be involved in cardiac remodeling, but the underlying mechanisms remain elusive. We hypothesized that SOCE may increase nuclear calcium, which alters gene expression via calcium/calmodulin-dependent enzyme signaling, and elucidated the underlying cellular mechanisms. An experimental protocol was established in isolated adult rat cardiomyocytes to elicit SOCE by re-addition of calcium following complete depletion of sarcoplasmic reticulum (SR) calcium and to quantify SOCE in relation to the electrically stimulated calcium transient (CaT) measured in the same cell before SR depletion. Using confocal imaging, calcium changes were recorded simultaneously in the cytosol and in the nucleus of the cell. In ventricular myocytes, SOCE was observed in the cytosol and nucleus amounting to ≈15% and ≈25% of the respective CaT. There was a linear correlation between the SOCE-mediated calcium increase in the cytosol and nucleus. Inhibitors of TRPC or Orai channels reduced SOCE by ≈33–67%, whereas detubulation did not. In atrial myocytes, SOCE with similar characteristics was observed in the cytosol and nucleus. However, the SOCE amplitudes in atrial myocytes were ≈two-fold larger than in ventricular myocytes, and this was associated with ≈1.4- to 3.6-fold larger expression of putative SOCE proteins (TRPC1, 3, 6, and STIM1) in atrial tissue. The results indicated that SOCE in atrial and ventricular myocytes is able to cause robust calcium increases in the nucleus and that both TRPC and Orai channels may contribute to SOCE in adult cardiomyocytes.

Funder

German Academic Exchange Service

Open Access Publishing Fund of Philipps-Universität Marburg

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3