SIRT1 Prevents R-Loops during Chronological Aging by Modulating DNA Replication at rDNA Loci

Author:

Thakur Bhushan L.1,Kusi Nana A.1,Mosavarpour Sara1,Zhu Roger1,Redon Christophe E.1ORCID,Fu Haiqing1,Dhall Anjali1,Pongor Lorinc S.1ORCID,Sebastian Robin1ORCID,Indig Fred E.2,Aladjem Mirit I.1

Affiliation:

1. Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

2. Confocal Imaging Facility, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA

Abstract

In metazoans, the largest sirtuin, SIRT1, is a nuclear protein implicated in epigenetic modifications, circadian signaling, DNA recombination, replication, and repair. Our previous studies have demonstrated that SIRT1 binds replication origins and inhibits replication initiation from a group of potential initiation sites (dormant origins). We studied the effects of aging and SIRT1 activity on replication origin usage and the incidence of transcription–replication collisions (creating R-loop structures) in adult human cells obtained at different time points during chronological aging and in cancer cells. In primary, untransformed cells, SIRT1 activity declined and the prevalence of R-loops rose with chronological aging. Both the reduction in SIRT1 activity and the increased abundance of R-loops were also observed during the passage of primary cells in culture. All cells, regardless of donor age or transformation status, reacted to the short-term, acute chemical inhibition of SIRT1 with the activation of excessive replication initiation events coincident with an increased prevalence of R-loops. However, cancer cells activated dormant replication origins, genome-wide, during long-term proliferation with mutated or depleted SIRT1, whereas, in primary cells, the aging-associated SIRT1-mediated activation of dormant origins was restricted to rDNA loci. These observations suggest that chronological aging and the associated decline in SIRT1 activity relax the regulatory networks that protect cells against excess replication and that the mechanisms protecting from replication–transcription collisions at the rDNA loci manifest as differentially enhanced sensitivities to SIRT1 decline and chronological aging.

Funder

Intramural Research Program of the NIH, Center for Cancer Research, National Cancer Institute

National Institute on Aging

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3