Land Use, Microorganisms, and Soil Organic Carbon: Putting the Pieces Together

Author:

Mo LingziORCID,Zanella AugustoORCID,Bolzonella CristianORCID,Squartini AndreaORCID,Xu Guo-Liang,Banas Damien,Rosatti Mauro,Longo Enrico,Pindo Massimo,Concheri GiuseppeORCID,Fritz InesORCID,Ranzani GiuliaORCID,Bellonzi Marco,Campagnolo Marco,Casarotto Daniele,Longo Michele,Linnyk Vitalyi,Ihlein Lucas,Yeomans Allan James

Abstract

We set out to study what biodiversity is, and how it can be influenced by human activities. To carry out this research, we looked for two, relatively closed, natural small-island systems: one little-influenced by human settlement and another equivalent (same vegetation series aligned 200 m from the first) but heavily settled. In these two environments, two transects were created in 10 subecosystems, from the sea to the mainland. We sought similar subecosystems in both places. We selected a series of eight points along the same gradient in the two environments, with two additional nonoverlapping points, specific to “natural plus” or “natural minus”. We studied soil microorganisms and arthropods to have a large number of cases (OTUs) available, and also studied the microorganisms’ phylogenetic status. We also compared biodiversity with soil organic carbon (SOC) content, using two SOC measurement systems (with and without litter), to understand biodiversity starting from its potential source of food (SOC). The results surprised us: the biodiversity indices are higher in the anthropized environment; the level of biodiversity of these microorganisms (OTUs) is linked to the quantity of organic carbon measured in the first 30 cm of soil with two different methods, Carbon Still Yeomans (650 g of soil sample) and Skalar Primacs ATC-100-IC-E (1 g of soil sample). The following forced line at the origin explains 85% of the variance: Shannon–Wiener’s H = 1.42 • ln (TOC400); where ln = natural logarithm and TOC400 = organic carbon lost from a soil sample raised to 400 °C. The concept of biodiversity merges with that of survival: the more species there are, the better they are organized among themselves in the process of food consumption (SOC utilization), and the better they will be able to transform the environment to survive and evolve with it. We wanted to identify the differences in soil biodiversity of natural and anthropogenic ecosystems, to offer evidence-providing tools to land managers to achieve more ecologically efficient managing practices.

Funder

University of Padua

University of Lorraine

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference107 articles.

1. Symbiotic Planet: A New Look at Evolution;Margulis,1998

2. Atmospheric homeostasis by and for the biosphere: the gaia hypothesis

3. On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life;Darwin,1859

4. The Biotic Community

5. Nature and Structure of the Climax

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3