Online Calibration of Extrinsic Parameters for Solid-State LIDAR Systems

Author:

Mints Mark O.1ORCID,Abayev Roman1ORCID,Theisen Nick1ORCID,Paulus Dietrich1ORCID,von Gladiss Anselm1ORCID

Affiliation:

1. Active Vision Group, Institute for Computational Visualistics, University of Koblenz, 56016 Koblenz, Germany

Abstract

This work addresses the challenge of calibrating multiple solid-state LIDAR systems. The study focuses on three different solid-state LIDAR sensors that implement different hardware designs, leading to distinct scanning patterns for each system. Consequently, detecting corresponding points between the point clouds generated by these LIDAR systems—as required for calibration—is a complex task. To overcome this challenge, this paper proposes a method that involves several steps. First, the measurement data are preprocessed to enhance its quality. Next, features are extracted from the acquired point clouds using the Fast Point Feature Histogram method, which categorizes important characteristics of the data. Finally, the extrinsic parameters are computed using the Fast Global Registration technique. The best set of parameters for the pipeline and the calibration success are evaluated using the normalized root mean square error. In a static real-world indoor scenario, a minimum root mean square error of 7 cm was achieved. Importantly, the paper demonstrates that the presented approach is suitable for online use, indicating its potential for real-time applications. By effectively calibrating the solid-state LIDAR systems and establishing point correspondences, this research contributes to the advancement of multi-LIDAR fusion and facilitates accurate perception and mapping in various fields such as autonomous driving, robotics, and environmental monitoring.

Funder

Federal Office of Bundeswehr Equipment, Information Technology and In-Service Support

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3