Adaptive Composite Fault Diagnosis of Rolling Bearings Based on the CLNGO Algorithm

Author:

Yu Sen,Ma Jie

Abstract

In this paper, a novel composite fault diagnosis method combining adaptive feature mode decomposition (FMD) and minimum noise amplitude deconvolution (MNAD) is proposed. Firstly, chaos mapping and leader mutation selection strategy were introduced to improve the Northern Goshawk algorithm (NGO), and a chaotic leadership Northern Goshawk optimization (CLNGO) algorithm was proposed. The advantages of the CLNGO algorithm in convergence accuracy and speed were verified by 12 benchmark functions. Then, a new index called sparse pulse and cyclicstationarity (SPC) is proposed to evaluate signal sparsity. Finally, SPC is used as the fitness function of CLNGO to optimize FMD and MNAD. The optimal decomposition mode n and filter length of FMD, and filter length L and noise ratio ρ of MNAD are selected. The CLNGO-FMD is used to decompose signal into different modes. The signal is reconstructed based on the kurtosis criterion and the CLNGO-MNAD method is used to reduce the noise of the reconstructed signal twice. The experimental results show that the proposed method can achieve the enhancement of weak features and the removal of noise to extract the fault feature frequency adaptively. Compared with EMD, VMD, MOMEDA, MCKD and other methods, the proposed method has better performance in fault feature frequency extraction, and it is effective for the diagnosis of single faults and composite faults.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3