Abstract
A hierarchical structure based on a Deep LSTM Supervised Autoencoder Neural Network (Deep LSTM-SAE NN) is presented for the detection and classification of faults in industrial plants. The proposed methodology has the ability to classify incipient faults that are difficult to detect and diagnose with traditional and many recent methods. Faults are grouped into different subsets according to the degree of difficulty to classify them accurately in the proposed hierarchical structure. External pseudo-random binary signals (PRBS) are injected in the system to enhance the identification of incipient faults. The approach is illustrated on the benchmark process (Tennessee Eastman Process) in order to compare across different methodologies. The efficacy of the proposed method is shown by a comprehensive comparison between many recent and traditional fault detection and diagnosis methods in the literature for Tennessee Eastman Process. The proposed work results in significant improvements in the classification of faults over both multivariate linear model-based strategies and non-hierarchical nonlinear model-based strategies.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献