Analysis Method and Case Study of the Lightweight Design of Automotive Parts and Its Influence on Carbon Emissions

Author:

Li Qiang,Zhang Yu,Zhang CuixiaORCID,Wang Xiang,Chen Jianqing

Abstract

The automobile industry, as a representative in pursuing the goals of “emission peak” and “carbon neutrality”, has made low carbon a new industrial practice. With regard to low carbon, the lightweight design proves to be an effective approach to reducing carbon emissions from automobiles. Given the state of research, in which the existing lightweight design schemes of automobiles seldom consider the impact of the lightweight quality on carbon emissions during the whole life cycle of the automobiles, this paper proposes a more comprehensive lightweight design method for automobiles in regard to carbon emissions. First, the finite element method was adopted to analyze the stress, strain and safety factors of the automobile parts based on their stress, so as to identify the positions where the lightweight design was applicable. Subsequently, a lightweight scheme was designed accordingly. Next, the finite element method was re-applied to the parts whose weights had been reduced. In this way, the feasibility of the lightweight scheme was verified. In addition, a method of calculating the carbon emissions produced by changes in the mass, manufacturing processes, application and recycling of automobile parts after the application of the lightweight design was also presented. The method can be used for evaluating the low carbon benefits of the lightweight design scheme. To prove the feasibility of the method, the ZS061750-152101 wheel hub designed and manufactured by Anhui Axle Co., Ltd. was taken as an example for the case analysis. The lightweight design changes three structures of the wheel hub, reducing its weight by 1.4 kg in total. For a single wheel hub, the carbon emissions are reduced by 51.22 kg altogether. That is to say, if the lightweight scheme were to be applied to all the wheels produced by Anhui Axle Co., Ltd. (about 500,000 per year), the carbon emissions from the wheel production, application and recycling could be cut by 2.56 × 107 kg, marking a favorable emission reduction effect. The proposed method can not only provide insight into the lightweight design of automobiles and other equipment against the background of low carbon but also provide a channel for calculating the carbon emission changes in the whole process after the application of the lightweight design.

Funder

Scientific Research Project of Anhui Universities

Social Science Innovation and Development in Anhui Province

Henan Province Scientific and Technological Research

Scientific Research Platform Open Project of Suzhou University

Teaching Research Project of Anhui Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference42 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3