Leaching Behavior of the Main Metals from Copper Anode Slime during the Pretreatment Stage of the Kaldor Furnace Smelting Process

Author:

Zeng Hong,Liu Fupeng,Zhou Songlin,Liao Chunfa,Chen Feixiong,Zeng Yanliang

Abstract

The Kaldor furnace smelting process is currently the mainstream process for treating copper anode slime, but the existence of copper, tellurium and other impurities has adverse effects on the recovery of gold and silver during the Kaldor furnace smelting stage. Therefore, it is necessary to pretreat the copper anode slime to remove these impurities before Kaldor furnace reduction smelting. However, the current pretreatment process of copper anode slime generally has the problem of low removal efficiency of copper and tellurium, and little research on the occurrence state of main metals in copper anode slime. Therefore, this study quantitatively determined the phase composition of Cu, Te, Pb, Bi, As, Sb, Se, Ag and Au, and hydrogen peroxide was introduced to enhance the leaching of impurities. The leaching behavior of each metal in copper anode slime was investigated in detail. The results demonstrate that Cu and Te in the copper anode slime mainly exist in the form of CuO and CuSO4 and Te and AuTe2, respectively. More than 99% of the Cu and 97% of the Te were leached out using 250 g/L H2SO4 and 28.8 g/L H2O2 with a leaching pressure of 0.8 MPa at 150 °C for 2 h, while the leaching of Au and Ag was both < 0.03%. The removal of Cu and Te and the enrichment of precious metals were achieved. This study provides a rich theoretical reference for the optimization of the Kaldor furnace process.

Funder

National Nature Science Foundation of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Jiangxi Postdoctoral Science Foundation

Jiangxi Provincial Key Laboratory of Flash Green Development and Recycling

Postdoctoral Innovative Talent Support Program of Shandong Province and Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3