Hypoglycemic Effect and Experimental Validation of Scutellariae Radix based on Network Pharmacology and Molecular Docking

Author:

Liu Xiaolong,Li Chunyan,Chen Qijian,Xiao Xian,Li Manman,Xue JintaoORCID

Abstract

Scutellariae Radix (SR) is a well-known traditional herb that has good pharmacological effects against diabetes. However, the mechanism of SR against diabetes is not clear. In this study, the ingredient–target–pathway relationship and hypoglycemic effect of SR on diabetes were explored using network pharmacology, molecular docking and an animal experiment. The targets of SR and diabetes were mined. The selected targets were studied using Gene Ontology (GO) enrichment analysis and pathway enrichment analysis. The network of active components, targets and pathways was integrated to analyze the ingredient–target–pathway relationship. Then, the correspondence between the active components and targets was verified using molecular docking. Finally, an animal experiment was used to verify the hypoglycemic effect of SR. There were 52 components and 22 targets for the hypoglycemic effect of SR. We identified 18 biological processes, 9 cellular components, 15 molecular functions and 25 signaling pathways. Molecular docking results indicated that the targets of diabetes bound strongly to the main components. The animal experiments showed that SR could significantly decrease the blood glucose level of diabetic rats (p ≤ 0.05). This study explored the potential targets and signaling pathways of SR in diabetes, and the results may help to illustrate the hypoglycemic mechanism of SR.

Funder

scientific and technological projects of Henan Province

National College Students Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3