Author:
Zhang Peiyao,Jiang Wanlu,Shi Xiaodong,Zhang Shuqing
Abstract
Prediction of remaining useful life is crucial for mechanical equipment operation and maintenance. It ensures safe equipment operation, reduces maintenance costs and economic losses, and promotes development. Most of the remaining useful life prediction studies focus on bearings, gearboxes, and engines; however, research on hydraulic pumps remains limited. This study focuses on gear pumps that are commonly used in the hydraulic field and develops a practical method of predicting remaining useful life. The deep sparse autoencoder is used to extract multi–dimensional features. Subsequently, the feature vectors are inputted to the support vector data description to calculate the machine degradation degree at the corresponding time and obtain the health indicator curve of the machine’s life cycle. In building the health state degradation curve, data are processed in an unsupervised manner to avoid the influence of artificial feature selection on the test. The method is validated on the public bearing and self–collected gear pump datasets. The results are better than those of the comparative algorithms: (1) commonly used time–frequency characteristics with principal component analysis and (2) deep sparse autoencoder with self–organizing mapping. Next, the multilayer bidirectional long–short–term memory network is trained as a prediction model using the gear pump health indicator curves obtained previously and applied to the test data. Finally, the proposed method is compared with two others of the same type and the evaluation indexes are calculated based on the prediction results of the three algorithms. From the evaluation indexes, the mean absolute error of the proposed method is reduced by 2.53, and the normalized mean squared error is reduced by 0.36. This result indicates that the prediction results of the method for the remaining useful life of the gear pump are closer to the actual situation.
Funder
National Natural Science Foundation of China
Province Natural Science Foundation of Hebei, China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献