Diversity and Metabolic Potential of a PAH-Degrading Bacterial Consortium in Technogenically Contaminated Haplic Chernozem, Southern Russia

Author:

Delegan Yanina,Sushkova SvetlanaORCID,Minkina TatianaORCID,Filonov AndreyORCID,Kocharovskaya Yulia,Demin KonstantinORCID,Gorovtsov Andrey,Rajput Vishnu D.ORCID,Zamulina InnaORCID,Grigoryeva Tatiana,Dudnikova Tamara,Barbashev AndreyORCID,Maksimov Aleksey

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are chemically recalcitrant carcinogenic and mutagenic compounds with primarily anthropogenic origin. The investigation of the effects of emissions from energy enterprises on soil microbiomes is of a high priority for modern soil science. In this study, metagenomic profiling of technogenic contaminated soils was carried out based on bioinformatic analysis of shotgun metagenome data with PAH-degrading genes identification. The use of prokaryotic consortia has been often used as one of the bio-remediation approaches to degrade PAHs with different molecular weight. Since the process of PAH degradation predominantly includes non-culturable or yet-to-be cultured species, metagenomic approaches are highly recommended for studying the composition and metabolic abilities of microbial communities. In this study, whole metagenome shotgun sequencing of DNA from two soils with varying PAH levels was performed. In the control site, the total content of 12 priority PAHs was 262 µg kg−1. The background soil levels in the polluted site for PAHs with 3 or more rings exceeded this, at 800 µg kg−1. The abundance of genes and taxa associated with PAH degradation in these two sites were estimated. Despite differences in PAH concentrations up to 1200 µg kg−1, individual and operon-organized PAH degradation genes were almost equally abundant and diverse in pristine and highly contaminated areas. The most numerous taxa in both spots were actinobacteria from Terrabacteria group. In addition to well-known PAH degraders such as Gordonia and Rhodococcus, genes corresponding to the PAH degradation were found in Azoarcus, Burkholderia and Variovorax. The data shows non-specificity and multifunctionality of metabolic pathways encoded in the genes of PAH-degrading microorganisms.

Funder

Ministry of Science and Higher Education of the Russian Federation

Strategic Academic Leadership Program of the Southern Federal University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3