Author:
Wu Xin,Gao Yuchen,Jiao Dian
Abstract
Non-intrusive load monitoring (NILM) is an effective method to optimize energy consumption patterns. Since the concept of NILM was proposed, extensive research has focused on energy disaggregation or load identification. The traditional method is to disaggregate mixed signals, and then identify the independent load. This paper proposes a multi-label classification method using Random Forest (RF) as a learning algorithm for non-intrusive load identification. Multi-label classification can be used to determine which categories data belong to. This classification can help to identify the operation states of independent loads from mixed signals without disaggregation. The experiments are conducted in real environment and public data set respectively. Several basic electrical features are selected as the classification feature to build the classification model. These features are also compared to select the most suitable features for classification by feature importance parameters. The classification accuracy and F-score of the proposed method can reach 0.97 and 0.98, respectively.
Funder
the Fundamental Research Funds for the Central Universities of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献