Transient Modeling of Grain Structure and Macrosegregation during Direct Chill Casting of Al-Cu Alloy

Author:

Chen Qipeng,Li Hongxiang,Shen HoufaORCID

Abstract

Grain structure and macrosegregation are two important aspects to assess the quality of direct chill (DC) cast billets, and the phenomena responsible for their formation are strongly interacted. Transient modeling of grain structure and macrosegregation during DC casting is achieved with a cellular automaton (CA)–finite element (FE) model, by which the macroscopic transport is coupled with microscopic relations for grain growth. In the CAFE model, a two-dimensional (2D) axisymmetric description is used for cylindrical geometry, and a Lagrangian representation is employed for both FE and CA calculations. This model is applied to the DC casting of two industrial scale Al-6.0 wt % Cu round billets with and without grain refiner. The grain structure and macrosegregation under thermal and solutal convection are studied. It is shown that the grain structure is fully equiaxed in the grain-refined billet, while a fine columnar grain region and a coarse columnar grain region are formed in the non-grain-refined billet. With the increasing casting speed, grains become finer and grow in a direction more perpendicular to the axis, and the positive segregation near the centerline becomes more pronounced. The increasing casting temperature makes grains coarser and the negative segregation near the surface more pronounced.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3