Airborne Quantum Key Distribution Performance Analysis under Supersonic Boundary Layer

Author:

Yu Huicun12ORCID,Tang Bangying3,Ding Haolin4ORCID,Xue Yang5,Tang Jie1,Wang Xingyu1ORCID,Liu Bo2ORCID,Shi Lei1

Affiliation:

1. Information and Navigation College, Air Force Engineering University, Xi’an 710077, China

2. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China

3. College of Computer and Science, National University of Defense Technology, Changsha 410073, China

4. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

5. Academy of Military Sciences, Beijing 100864, China

Abstract

Airborne quantum key distribution (QKD) that can synergize with terrestrial networks and quantum satellite nodes is expected to provide flexible and relay links for the large-scale integrated communication network. However, the photon transmission rate would be randomly reduced, owing to the random distributed boundary layer that surrounding to the surface of the aircraft when the flight speed larger than Mach 0.3. Here, we investigate the airborne QKD performance with the BL effects. Furthermore, we take experimental data of supersonic BL into the model and compare the airborne QKD performance under different conditions. Simulation results show that, owing to the complex small-scale turbulence structures in the supersonic boundary layer, the deflection angle and correspondingly drifted offset of the beam varied obviously and randomly, and the distribution probability of photons are redistributed. And the subsonic and supersonic boundary layer would decrease ~35.8% and ~62.5% of the secure key rate respectively. Our work provides a theoretical guidance towards a possible realization of high-speed airborne QKD.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3