Insights into Ionic Liquids for Flame Retardant: A Study Based on Bibliometric Mapping

Author:

Pan Kai1ORCID,Liu Hui12ORCID,Wang Zhijun2,Ji Wenjing1,Wang Jianhai1,Huang Rui1ORCID,Wei Ze1,Ye Dong1,Xu Chang1,Wang Haining1

Affiliation:

1. College of Quality and Safety Engineering, China Jiliang University, Hangzhou 314423, China

2. State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo 454099, China

Abstract

Fire is a typical disaster in the processing industry. Ionic liquids, as a type of green flame retardant, play an important role in process safety. In order to grasp the current research status, hotspots, and frontiers in the field of ionic liquids in flame retardancy, the bibliometric mapping method is applied to study the relevant literature in Web of Science datasets from 2000–2022 in this paper. The results show that the research on ionic liquids in flame retardancy is multidisciplinary and involves some disciplines such as energy science, material science, and environmental protection. Journal of Power Sources, Polymer Degradation and Stability, ACS Applied Materials and Interfaces, and Chemical Engineering Journal are the core journals in the field. The results of keyword co-occurrence indicate that the hotspots of research can be divided into five components: the improvement and application of pure ionic liquids electrolytes, the research of gel polymer electrolytes, applying ionic liquids to enhance the polymer materials’ flame retardancy properties, utilizing ionic liquids and inorganic materials to synergize flame retardant polymers, and using ionic liquids flame retardant to improve material’s multiple properties. The burst terms and time zone diagram’s results point out the combination of computational quantum chemistry to study the flame retardancy mechanism of ionic liquids, the study of fluorinated electrolytes, ionic liquids for smoke suppression, phosphorus-containing ionic liquids for flame retardant, and machine learning-assisted design of ILs flame retardants are the research frontiers and future research trends.

Funder

Zhejiang Provincial Natural Science Foundation of China

State Key Laboratory Cultivation Base for Gas Geology and Gas Control

Science and Technology Project of Department of Education of Zhejiang Province

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

MDPI AG

Subject

Public Health, Environmental and Occupational Health,Safety Research,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mapping the Knowledge Domain of Corrosion Inhibition Studies of Ionic Liquids;Industrial & Engineering Chemistry Research;2023-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3