Abstract
Accurately predicting wind power plays a vital part in site selection, large-scale grid connection, and the safe and efficient operation of wind power generation equipment. In the stage of data pre-processing, density-based spatial clustering of applications with noise (DBSCAN) algorithm is used to identify the outliers in the wind power data and the collected wind speed data of a wind power plant in Shandong Province, and the linear regression method is used to correct the outliers to improve the prediction accuracy. Considering the important impact of wind speed on power, the average value, the maximum difference and the average change rate of daily wind speed of each historical day are used as the selection criteria to select similar days by using DBSCAN algorithm and Euclidean distance. The short-term wind power prediction is carried out by using the similar day data pre-processed and unprocessed, respectively, as the input of back propagation neural network optimized by genetic algorithm (GA-BP neural network). Analysis of the results proves the practicability and efficiency of the prediction model and the important role of outlier identification and correction in improving the accuracy of wind power prediction.
Funder
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference21 articles.
1. A review on the young history of the wind power short-term prediction
2. Wind speed and generated power forecasting in wind farm;Yang;Proc. CSEE,2005
3. Improvement of ultra-short-term forecast for wind power;Chen;Autom. Electr. Power Syst.,2011
4. A short-term wind power prediction method based on wavelet decomposition and BP neural network;Shi;Autom. Electr. Power Syst.,2011
5. Long-Term Wind Speed and Power Forecasting Using Local Recurrent Neural Network Models
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献