Cost Minimization for Charging Electric Bus Fleets

Author:

Mortensen Daniel1ORCID,Gunther Jacob1,Droge Greg1ORCID,Whitaker Justin1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Utah State University, Logan, UT 84322, USA

Abstract

Recent attention for reduced carbon emissions has pushed transit authorities to adopt battery electric buses (BEBs). One challenge experienced by BEB users is extended charge times, which create logistical challenges and may force BEBs to charge when energy is more expensive. Furthermore, BEB charging leads to high power demands, which can significantly increase monthly power costs and may push the electrical infrastructure beyond its present capacity, requiring expensive upgrades. This work presents a novel method for minimizing the monthly cost of BEB charging while meeting bus route constraints. This method extends previous work by incorporating a more novel cost model, effects from uncontrolled loads, differences between daytime and overnight charging, and variable rate charging. A graph-based network-flow framework, represented by a mixed-integer linear program, encodes the charging action space, physical bus constraints, and battery state of the charge dynamics. The results for three scenarios are considered: uncontested charging, which uses equal numbers of buses and chargers; contested charging, which has more buses than chargers; and variable charge rates. Among other findings, we show that BEBs can be added to the fleet without raising the peak power demand for only the cost of the energy, suggesting that conversion to electrified transit is possible without upgrading power delivery infrastructure.

Funder

National Science Foundation

Department of Energy

PacifiCorp

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3