Electrochemical Impedance Spectrum (EIS) Variation of Lithium-Ion Batteries Due to Resting Times in the Charging Processes

Author:

Li Qingbo1,Yi Du2,Dang Guoju1,Zhao Hui2ORCID,Lu Taolin1,Wang Qiyu1,Lai Chunyan1,Xie Jingying1

Affiliation:

1. Space Power Technology State Key Laboratory, Shanghai Institute of Space Power-Sources, 2965#, Dongchuan Road, Shanghai 200245, China

2. School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China

Abstract

The electrochemical impedance spectrum (EIS) is a non-destructive technique for the on-line evaluation and monitoring of the performance of lithium-ion batteries. However, the measured EIS can be unstable and inaccurate without the proper resting time. Therefore, we conducted comprehensive EIS tests during the charging process and at different state of charge (SOC) levels with various resting times. The test results revealed two findings: (1) EIS tests with a constant long resting time showed a clear pattern in the impedance spectral radius—a decrease followed by a slight increase. We analyzed the impedance data using an equivalent circuit model and explained the changes through circuit parameters. (2) We examined the effect of resting time on impedance at consistent SOC levels. While low SOC levels exhibited significant sensitivity to resting time, medium SOC levels showed less sensitivity, and high SOC levels had minimal impact on resting time. The equivalent circuit parameters matched the observed trends. Kramers–Kronig transformation was conducted to assess the reliability of the experiments. This study not only summarizes the relationship between the EIS and SOC but also highlights the importance of resting time in impedance analysis. Recognizing the role of the resting time could enhance impedance-based battery studies, contribute to refined battery status evaluation, and help researchers to design proper test protocols.

Funder

“Science and Technology Innovation Action Plan” of the Science and Technology Commission of Shanghai Municipality

National Key R&D Program of China

Publisher

MDPI AG

Subject

Automotive Engineering

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3