A Novel Dynamic Li-Ion Battery Model for the Aggregated Charging of EVs

Author:

Asim Ahmed M.1,Ahmed Osama A.2,Ibrahim Amr M.1ORCID,El-Khattam Walid Aly1,Talaat Hossam E.3

Affiliation:

1. Department of Electrical Power and Machines Engineering, University of Ain Shams, Cairo 11566, Egypt

2. Department of Electrical Engineering, University of Tabuk, Tabuk 71491, Saudi Arabia

3. Department of Electrical Engineering, Future University in Egypt, Cairo 11835, Egypt

Abstract

Implementing successful aggregated charging strategies for electric vehicles to participate in the wholesale market requires an accurate battery model that can operate at scale while capturing critical battery dynamics. Existing models either lack precision or pose computational challenges for fleet-level coordination. To our knowledge, most of the literature widely adopts battery models that neglect critical battery polarization dynamics favoring scalability over accuracy, donated as constant power models (CPMs). Thus, this paper proposes a novel linear battery model (LBM) intended specifically for use in aggregated charging strategies. The LBM considers battery dynamics through a linear representation, addressing the limitations of existing models while maintaining scalability. The model dynamic behavior is evaluated for the four commonly used lithium-ion chemistries in EVs: lithium iron phosphate (LFP), nickel manganese cobalt (NMC), lithium manganese oxide (LMO), and nickel cobalt aluminum (NCA). The results showed that the LBM closely matches the high-fidelity Thevenin equivalent circuit model (Th-ECM) with substantially improved accuracy over the CPM, especially at higher charging rates. Finally, a case study was carried out for bidding in the wholesale energy market, which proves the ability of the model to scale.

Funder

Future University

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3