A High-Precision Car-Following Model with Automatic Parameter Optimization and Cross-Dataset Adaptability

Author:

Qin Pinpin1,Bin Shenglin1,Pang Yanzhi2,Li Xing1,Wu Fumao1,Liu Shiwei1

Affiliation:

1. School of Mechanical Engineering, Guangxi University, Nanning 530004, China

2. Guangxi Key Laboratory for International Join for China-ASEAN Comprehensive Transportation, Nanning University, Nanning 541699, China

Abstract

Despite the significant impact of network hyperparameters on deep learning car-following models, there has been relatively little research on network hyperparameters of deep learning car-following models. Therefore, this study proposes a car-following model that combines particle swarm optimization (PSO) and gated recurrent unit (GRU) networks. The PSO-GRU car-following model is trained and tested using data from the natural driving database. The results demonstrate that compared to the intelligent driver model (IDM) and the GRU car-following model, the PSO-GRU car-following model reduces the mean squared error (MSE) for the speed simulation of following vehicles by 88.36% and 72.92%, respectively, and reduces the mean absolute percentage error (MAPE) by 64.81% and 50.14%, respectively, indicating a higher prediction accuracy. Dataset 3 from the drone video trajectory database of Southeast University and NGSIM’s I-80 dataset are used to study the car-following model’s cross-dataset adaptability, that is, to verify its transferability. Compared to the GRU car-following model, the PSO-GRU car-following model reduces the standard deviation of the test results by 60.64% and 32.89%, highlighting its more robust prediction stability and better transferability. Verifying the ability of the car-following model to produce the stop-and-go phenomenon can evaluate its transferability more comprehensively. The PSO-GRU car-following model outperforms the GRU car-following model in creating stop-and-go sensations through platoon simulation tests, demonstrating its superior transferability. Therefore, the proposed PSO-GRU car-following model has higher prediction accuracy and cross-dataset adaptability compared to other car-following models.

Funder

Guangxi Science and Technology Major Special Fund

Guangxi Science and Technology Base and Talent Project for Guangxi Science and Technology Plan Project: Construction of Guangxi Transportation New Technology Transfer Center Platform

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3