Author:
Abkar Mahdi,Sørensen Jens,Porté-Agel Fernando
Abstract
In this study, an analytical wake model for predicting the mean velocity field downstream of a wind turbine under veering incoming wind is systematically derived and validated. The new model, which is an extended version of the one introduced by Bastankhah and Porté-Agel, is based upon the application of mass conservation and momentum theorem and considering a skewed Gaussian distribution for the wake velocity deficit. Particularly, using a skewed (instead of axisymmetric) Gaussian shape allows accounting for the lateral shear in the incoming wind induced by the Coriolis force. This analytical wake model requires only the wake expansion rate as an input parameter to predict the mean wake flow downstream. The performance of the proposed model is assessed using the large-eddy simulation (LES) data of a full-scale wind turbine wake under the stably stratified condition. The results show that the proposed model is capable of predicting the skewed structure of the wake downwind of the turbine, and its prediction for the wake velocity deficit is in good agreement with the high-fidelity simulation data.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献