Coordination and Control of Building HVAC Systems to Provide Frequency Regulation to the Electric Grid

Author:

Olama Mohammed,Kuruganti Teja,Nutaro James,Dong Jin

Abstract

Buildings consume 73% of electricity produced in the United States and, currently, they are largely passive participants in the electric grid. However, the flexibility in building loads can be exploited to provide ancillary services to enhance the grid reliability. In this paper, we investigate two control strategies that allow Heating, Ventilation and Air-Conditioning (HVAC) systems in commercial and residential buildings to provide frequency regulation services to the grid while maintaining occupants comfort. The first optimal control strategy is based on model predictive control acting on a variable air volume HVAC system (continuously variable HVAC load), which is available in large commercial buildings. The second strategy is rule-based control acting on an aggregate of on/off HVAC systems, which are available in residential buildings in addition to many small to medium size commercial buildings. Hardware constraints that include limiting the switching between the different states for on/off HVAC units to maintain their lifetimes are considered. Simulations illustrate that the proposed control strategies provide frequency regulation to the grid, without affecting the indoor climate significantly.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid control strategy for frequency regulation with variable refrigerant flow air conditioning system;Energy and Buildings;2024-01

2. Multi-agent reinforcement learning for fast-timescale demand response of residential loads;Machine Learning;2023-11-28

3. Experimental Evidence on Latency in a Fleet of Controllable Water Heaters;2023 IEEE Green Energy and Smart Systems Conference (IGESSC);2023-11-13

4. Research on Intelligent Air Conditioning Optimization Control Algorithms Based on Neural Networks and Heuristic Algorithms;2023 IEEE International Conference on Sensors, Electronics and Computer Engineering (ICSECE);2023-08-18

5. Findings from Design and Operation of Connected Neighborhoods;2023 IEEE Power & Energy Society General Meeting (PESGM);2023-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3