Author:
Ghosh Smarajit,Karar Vinod
Abstract
A growing interest in renewable energy resources has been observed for several years, due to their pollution-free nature, availability all over the world, and continuity. These facts make these energy resources attractive for many applications. In this work, the hybrid combination of a photovoltaic-biomass system is investigated as an energy source. This paper determines optimal sizing and cost reduction of grid-integrated renewable energy resources by using an intelligence optimization technique, the dragonfly algorithm. The efficiency of the proposed methodology is also compared with an existing technique, which uses the artificial bee colony (ABC) algorithm. The scope of this work is to reduce the annual total cost of power with a reduced number of solar panels. The monthly average solar radiation is used to compute the obtained power. The outcome of the proposed technique proves that the grid-connected system with an optimal number of components satisfactorily meets the needs of the village at a reduced price. The simulation results are carried out under the MATLAB environment. The comparison of results clearly demonstrates that the proposed system is much more efficient than the existing one.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献