Assimilation of Optimal Sized Hybrid Photovoltaic-Biomass System by Dragonfly Algorithm with Grid

Author:

Ghosh Smarajit,Karar Vinod

Abstract

A growing interest in renewable energy resources has been observed for several years, due to their pollution-free nature, availability all over the world, and continuity. These facts make these energy resources attractive for many applications. In this work, the hybrid combination of a photovoltaic-biomass system is investigated as an energy source. This paper determines optimal sizing and cost reduction of grid-integrated renewable energy resources by using an intelligence optimization technique, the dragonfly algorithm. The efficiency of the proposed methodology is also compared with an existing technique, which uses the artificial bee colony (ABC) algorithm. The scope of this work is to reduce the annual total cost of power with a reduced number of solar panels. The monthly average solar radiation is used to compute the obtained power. The outcome of the proposed technique proves that the grid-connected system with an optimal number of components satisfactorily meets the needs of the village at a reduced price. The simulation results are carried out under the MATLAB environment. The comparison of results clearly demonstrates that the proposed system is much more efficient than the existing one.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3