Determining Water Isotope Compositions for the IAEA WICO and North West Villages, South Africa

Author:

Mathuthu JosephORCID,Mokhine Naomi DikelediORCID,Mkiva Namhla,Nde Samuel CheORCID,Dennis Ingrid,Hendriks Johan,Palamuleni LobinaORCID,Kupi Tebogo Gilbert,Mathuthu MannyORCID

Abstract

Deuterium (2H) and oxygen 18 (18O) stable isotopes in water are the key indicators of hydrological and ecological patterns and processes. The water isotopes δ2H and δ18O have been employed widely as tracers in hydrological and ecological research, as they are integrated into geological and biological systems in a predictable manner. The aim of this study was to determine the water isotope composition of the International Atomic Energy Agency’s (IAEA) Water Isotope Inter-laboratory Comparison (WICO) samples and to determine the Local Meteoric Water Line for North West Province (NWP) villages in South Africa. The IAEA WICO 2020 samples were obtained from the IAEA, Vienna, and borehole water samples from selected villages in the North West province of South Africa were randomly collected to investigate the relationship between the stable isotopes (18O and 2H) and the climate in underground water aquifers. A cavity ring-down spectroscopy analyzer with laser-current-tuned cavity resonance, Picarro L2140-i, was used to measure triple water–isotope ratios with high precision. The IAEA WICO results obtained for the d-excess were in a satisfactory range and the margins of error were close to those required by the IAEA. The δ2H values ranged between −33.00‰ and −8.00‰, while the δ18O values ranged between −5.50‰ and −2.00‰. The results of this work have shown that our water science and management lab is capable of undertaking inter-laboratory comparisons for the IAEA.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3