Highly Efficient Adsorption of Pb(II) by Functionalized Humic Acid: Molecular Experiment and Theoretical Calculation

Author:

Xu Qi1,Yan Yan1,Jiao Yazhou1,Wu Jinxiong1,Yan Xiuling1,Su Xintai2ORCID

Affiliation:

1. University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China

2. Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China

Abstract

Environmental pollution has been widely considered by researchers, especially the heavy metals damage to the human and ecological environment is irreversible. Adsorption is an important method to remove heavy metal ions from the environment. In this paper, humic acid (HA) was functionalized by the improved Hummers method, and its adsorption capacity for Pb(II) was studied. The results of scanning electron microscope (SEM), X-ray diffraction (XRD), Roman, and Brunauer-Emmett-Teller (BET) showed that the thickness of irregular particles decreases to a layered structure during the transformation process. In addition, X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared spectra (FT-IR) spectra showed that the surface of oxidized-biochar (OBC) was rich in reactive oxygen species, which was conducive to the formation of coordination bonds with Pb(II). Further adsorption experiments showed that it was a spontaneous monolayer chemisorption. The results of the DFT calculation showed that -COOH had the lowest adsorption energy for Pb(II), and it was easier to form stable chemical bonds than -OH, -C=O, and -C-O-C-. Because those oxygen-containing functional groups not only can promote electrostatic attraction but also are more favorable for forming a covalent bond with Pb(II). This study had guiding significance for the deep modification and application of weathered coal as a heavy metal ion adsorbent or cation exchanger.

Funder

Key Laboratory Opening Project Foundation of Yili Normal University

Research and Innovation Team Cultivation Plan of Yili Normal University

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3