Enhancing/Improving Forming Limit Curve and Fracture Height Predictions in the Single-Point Incremental Forming of Al1050 Sheet Material

Author:

Hoang Trung-Kien1,Luyen The-Thanh2ORCID,Nguyen Duc-Toan3ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Thainguyen University of Technology, Thainguyen 250000, Vietnam

2. Faculty of Mechanical Engineering, Hungyen University of Technology and Education, Hungyen 160000, Vietnam

3. School of Mechanical Engineering, Hanoi University of Science and Technology, 1A-Dai Co Viet Street, Hai Ba Trung District, Hanoi City 100000, Vietnam

Abstract

Single-point incremental forming (SPIF) has emerged as a cost-effective and rapid manufacturing method, especially suitable for small-batch production due to its minimal reliance on molds, swift production, and affordability. Nonetheless, SPIF’s effectiveness is closely tied to the specific characteristics of the employed sheet materials and the intricacies of the desired shapes. Immediate experimentation with SPIF often leads to numerous product defects. Therefore, the pre-emptive use of numerical simulations to predict these defects is of paramount importance. In this study, we focus on the critical role of the forming limit curve (FLC) in SPIF simulations, specifically in anticipating product fractures. To facilitate this, we first construct the forming limit curve for Al1050 sheet material, leveraging the modified maximum force criterion (MMFC). This criterion, well-established in the field, derives FLCs based on the theory of hardening laws in sheet metal yield curves. In conjunction with the MMFC, we introduce a graphical approach that simplifies the prediction of forming limit curves at fracture (FLCF). Within the context of the SPIF method, FLCF is established through both uniaxial tensile deformation (U.T) and simultaneous uniform tensile deformation in bi-axial tensile (B.T). Subsequently, the FLCF predictions are applied in simulations and experiments focused on forming truncated cone parts. Notably, a substantial deviation in fracture height, amounting to 15.97%, is observed between simulated and experimental samples. To enhance FLCF prediction accuracy in SPIF, we propose a novel method based on simulations of truncated cone parts with variable tool radii. A FLCF is then constructed by determining major/minor strains in simulated samples. To ascertain the validity of this enhanced FLCF model, our study includes simulations and tests of truncated cone samples with varying wall angles, revealing a substantial alignment in fracture height between corresponding samples. This research contributes to the advancement of SPIF by enhancing our ability to predict and mitigate product defects, ultimately expanding the applicability of SPIF in diverse industrial contexts.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3