Fast and Non-Destructive Quail Egg Freshness Assessment Using a Thermal Camera and Deep Learning-Based Air Cell Detection Algorithms for the Revalidation of the Expiration Date of Eggs

Author:

Nakaguchi Victor MassakiORCID,Ahamed Tofael

Abstract

Freshness is one of the most important parameters for assessing the quality of avian eggs. Available techniques to estimate the degradation of albumen and enlargement of the air cell are either destructive or not suitable for high-throughput applications. The aim of this research was to introduce a new approach to evaluate the air cell of quail eggs for freshness assessment as a fast, noninvasive, and nondestructive method. A new methodology was proposed by using a thermal microcamera and deep learning object detection algorithms. To evaluate the new method, we stored 174 quail eggs and collected thermal images 30, 50, and 60 days after the labeled expiration date. These data, 522 in total, were expanded to 3610 by image augmentation techniques and then split into training and validation samples to produce models of the deep learning algorithms, referred to as “You Only Look Once” version 4 and 5 (YOLOv4 and YOLOv5) and EfficientDet. We tested the models in a new dataset composed of 60 eggs that were kept for 15 days after the labeled expiration label date. The validation of our methodology was performed by measuring the air cell area highlighted in the thermal images at the pixel level; thus, we compared the difference in the weight of eggs between the first day of storage and after 10 days under accelerated aging conditions. The statistical significance showed that the two variables (air cell and weight) were negatively correlated (R2 = 0.676). The deep learning models could predict freshness with F1 scores of 0.69, 0.89, and 0.86 for the YOLOv4, YOLOv5, and EfficientDet models, respectively. The new methodology for freshness assessment demonstrated that the best model reclassified 48.33% of our testing dataset. Therefore, those expired eggs could have their expiration date extended for another 2 weeks from the original label date.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference60 articles.

1. Automated pastures and the digital divide: How agricultural technologies are shaping labour and rural communities

2. Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers

3. You only look once: Unified, real-time object detection;Redmon;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),2016

4. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors;Wang;arXiv,2022

5. Yolov4: Optimal speed and accuracy of object detection;Alexey;arXiv,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3