Silk Powder from Cocoons and Woven Fabric as a Potential Bio-Modifier

Author:

Baranowska-Korczyc AnnaORCID,Hudecki Andrzej,Kamińska IrenaORCID,Cieślak MałgorzataORCID

Abstract

Silk, as a protein fiber characterized by high biocompatibility, biodegradability, and low toxicity, is mainly used as textile structures for various purposes, including for biological applications. The key issue for unlimited silk applicability as a modifier is to prepare its relevant form to cover or introduce to other materials. This study presents silk powder fabrication from Bombyx mori cocoons and non-dyed silk woven fabric through cryogenic milling. The cocoons were milled before and after the degumming process to obtain powders from raw structures and pure fibroin. The powder morphology and composition were analyzed using scanning electron microscopy and energy dispersive spectroscopy. The influence of the milling on the silk structure was studied using infrared and Raman spectroscopies, indicating that silk powders retained dominant β-sheet structure. The powders were also analyzed by differential scanning calorimetry and thermogravimetric techniques. The thermal endothermic peak and onset temperature characteristic for silk decomposition shifted to the lower values for all powders, indicating less thermal stability. However, the process was found to be an efficient way to obtain silk powders. The new milled form of silk can allow its introduction into different matrices or form coatings without using any harsh solvents, enriching them with new features and make more biologically friendly.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3