Efficient Rotational Angular Velocity Estimation of Rotor Target via Modified Short-Time Fractional Fourier Transform

Author:

Wang Wantian,Zhu Yong,Tang Ziyue,Chen YichangORCID,Zhu Zhenbo,Sun Yongjian,Zhou Chang

Abstract

As a special micro-motion feature of rotor target, rotational angular velocity can provide a discriminant basis for target classification and recognition. In this paper, the authors focus on an efficient rotational angular velocity estimation method of the rotor target is based on the combination of the time–frequency analysis algorithm and Hough transform. In order to avoid the problems of low time–frequency resolution and cross-term interference in short-time Fourier transform and Wigner–Ville distribution algorithm, a modified short-time fractional Fourier transform (M-STFRFT) is proposed to obtain the time-FRFT domain (FRFD)-frequency spectrum with the highest time–FRFD–frequency resolution. In particular, an orthogonal matching pursuit (OMP)-based algorithm is proposed to reduce the computational complexity when estimating the matched transform order in the proposed M-STFRFT algorithm. Firstly, partial transform order candidates are selected randomly from the complete candidates. Then, a partial entropy vector corresponding to partial transform order candidates is calculated from the FRFT results and utilized to reconstruct the complete entropy vector via the OMP algorithm, and the matched transform order can be estimated by searching minimum entropy. Based on the estimated matched transform order, STFRFT is performed to obtain the time–FRFD–frequency spectrum. Moreover, Hough transform is employed to obtain the energy accumulation spectrum, and the micro-Doppler parameter of rotational angular velocity can be estimated by searching the peak value from the energy accumulation spectrum. Both simulated data and measured data collected by frequency modulated continuous wave radar validate the effectiveness of the proposed algorithm.

Funder

National Natural Science Foundation of China

Young Talent Program of Early Warning Academy

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3