A Revised Snow Cover Algorithm to Improve Discrimination between Snow and Clouds: A Case Study in Gran Paradiso National Park

Author:

Richiardi ChiaraORCID,Blonda Palma,Rana Fabio MicheleORCID,Santoro MattiaORCID,Tarantino CristinaORCID,Vicario SaverioORCID,Adamo MariaORCID

Abstract

Snow cover plays an important role in biotic and abiotic environmental processes, as well as human activities, on both regional and global scales. Due to the difficulty of in situ data collection in vast and inaccessible areas, the use of optical satellite imagery represents a useful support for snow cover mapping. At present, several operational snow cover algorithms and products are available. Even though most of them offer an up-to-daily time scale, they do not provide sufficient spatial resolution for studies requiring high spatial detail. By contrast, the Let-It-Snow (LIS) algorithm can produce high-resolution snow cover maps, based on the use of both the normalized-difference snow index (NDSI) and a digital elevation model. The latter is introduced to define a threshold value on the altitude, below which the presence of snow is excluded. In this study, we revised the LIS algorithm by introducing a new parameter, based on a threshold in the shortwave infrared (SWIR) band, and by modifying the overall algorithm workflow, such that the cloud mask selection can be used as an input. The revised algorithm has been applied to a case study in Gran Paradiso National Park. Unlike previous studies, we also compared the performance of both the original and the modified algorithms in the presence of cloud cover, in order to evaluate their effectiveness in discriminating between snow and clouds. Ground data collected by meteorological stations equipped with both snow gauges and solarimeters were used for validation purposes. The changes introduced in the revised algorithm can improve upon the overall classification accuracy obtained by the original LIS algorithm (i.e., up to 89.17 from 80.88%). The producer’s and user’s accuracy values obtained by the modified algorithm (89.12 and 95.03%, respectively) were larger than those obtained by the original algorithm (76.68 and 93.67%, respectively), thus providing a more accurate snow cover map.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3