Potential of a SAR Small-Satellite Constellation for Rapid Monitoring of Flood Extent

Author:

Kitajima Natsumi,Seto Rie,Yamazaki Dai,Zhou Xudong,Ma WenchaoORCID,Kanae Shinjiro

Abstract

Constellations of small satellites equipped with synthetic aperture radar (SAR) payloads can realize observations in short time intervals independently from daylight and weather conditions and this technology is now in the early stages of development. This tool would greatly contribute to rapid flood monitoring, which is usually one of the main missions in upcoming plans, but few studies have focused on this potential application and a required observation performance for flood disaster monitoring has been unclear. In this study, we propose an unprecedented method for investigating how flood extents would be temporally and spatially observed with a SAR small-satellite constellation and for evaluating that observation performance via an original index. The virtual experiments of flood monitoring with designed constellations were conducted using two case studies of flood events in Japan. Experimental results showed that a SAR small-satellite constellation with sun-synchronous orbit at 570 km altitude, 30-km swath, 15–30° incidence angle, and 20 satellites can achieve 87% acquisition of cumulative flood extent in total observations. There is a difference between the results of observation performance in two cases because of each flood’s characteristics and a SAR satellite’s observation system, which implies the necessity of individual assessments for various types of rivers.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3