Abstract
Long-lasting precipitation deficits or heat waves can induce agricultural droughts, which are generally defined as soil moisture deficits that are severe enough to negatively impact vegetation. However, during short soil moisture drought events, the vegetation is not always negatively affected and sometimes even thrives. Due to this duality in agricultural drought impacts, the term “agricultural drought” is ambiguous. Using the ESA’s remotely sensed CCI surface soil moisture estimates and MODIS NDVI vegetation greenness data, we show that, in major European droughts over the past two decades, asynchronies and discrepancies occurred between the surface soil moisture and vegetation droughts. A clear delay is visible between the onset of soil moisture drought and vegetation drought, with correlations generally peaking at the end of the growing season. At lower latitudes, correlations peaked earlier in the season, likely due to an earlier onset of water limited conditions. In certain cases, the vegetation showed a positive anomaly, even during soil moisture drought events. As a result, using the term agricultural drought instead of soil moisture or vegetation drought, could lead to the misclassification of drought events and false drought alarms. We argue that soil moisture and vegetation drought should be considered separately.
Funder
Fonds National de la Recherche Luxembourg
Subject
General Earth and Planetary Sciences
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献