Rich CNN Features for Water-Body Segmentation from Very High Resolution Aerial and Satellite Imagery

Author:

Zhang Zhili,Lu MengORCID,Ji ShunpingORCID,Yu Huafen,Nie Chenhui

Abstract

Extracting water-bodies accurately is a great challenge from very high resolution (VHR) remote sensing imagery. The boundaries of a water body are commonly hard to identify due to the complex spectral mixtures caused by aquatic vegetation, distinct lake/river colors, silts near the bank, shadows from the surrounding tall plants, and so on. The diversity and semantic information of features need to be increased for a better extraction of water-bodies from VHR remote sensing images. In this paper, we address these problems by designing a novel multi-feature extraction and combination module. This module consists of three feature extraction sub-modules based on spatial and channel correlations in feature maps at each scale, which extract the complete target information from the local space, larger space, and between-channel relationship to achieve a rich feature representation. Simultaneously, to better predict the fine contours of water-bodies, we adopt a multi-scale prediction fusion module. Besides, to solve the semantic inconsistency of feature fusion between the encoding stage and the decoding stage, we apply an encoder-decoder semantic feature fusion module to promote fusion effects. We carry out extensive experiments in VHR aerial and satellite imagery respectively. The result shows that our method achieves state-of-the-art segmentation performance, surpassing the classic and recent methods. Moreover, our proposed method is robust in challenging water-body extraction scenarios.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3