Abstract
Fungal diseases and antifungal resistance continue to increase, including those caused by rare or emerging species. However, the majority of the published in vitro susceptibility data are for the most common fungal species. We reviewed the literature in order to pool reference minimal inhibitory concentration (MIC) data (Clinical and Laboratory Standards Institute—CLSI and European Committee on Antimicrobial Susceptibility—EUCAST) for rare/non-prevalent Candida and other yeast species. MIC results were compared with those for Candida albicans, C. glabrata, and C. krusei. Data were listed for twenty rare and emerging Candida spp., including C. auris, as well as two Cryptococcus spp., two Trichosporon spp., Saccharomyces cerevisiae and five Malassezia spp. The best detectors of antimicrobial resistance are the breakpoints, which are not available for the less common Candida species. However, epidemiological cutoff values (ECVs/ECOFFs) have been calculated using merely in vitro data for both reference methods for various non-prevalent yeasts and recently the CLSI has established ECVs for other Candida species. The ECV could identify the non-wild type (NWT or mutants) isolates with known resistance mechanisms. Utilizing these ECVs, we were able to report additional percentages of NWT, especially for non-prevalent species, by analyzing the MIC distributions in the literature. In addition, since several antifungal drugs are under development, we are listing MIC data for some of these agents.
Subject
Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Mini-Review of In Vitro Data for Candida Species, Including C. auris, Isolated during Clinical Trials of Three New Antifungals: Fosmanogepix, Ibrexafungerp, and Rezafungin;Journal of Fungi;2024-05-20
2. Antifungal Susceptibility of Saccharomyces cerevisiae Isolated from Clinical Specimens;Pathogens;2024-03-14
3. Manganese(II), copper(II) and silver(I) complexes containing 1,10-phenanthroline/1,10-phenanthroline-5,6-dione against
Candida
species;Future Microbiology;2024-02-21
4. Candida albicans and Antifungal Peptides;Infectious Diseases and Therapy;2023-11-08
5. Exposure of Cryptococcus neoformans to Seven Commonly Used Agricultural Azole Fungicides Induces Resistance to Fluconazole as Well as Cross-Resistance to Voriconazole, Posaconazole, Itraconazole and Isavuconazole;Pathogens;2023-04-29