Black Box Adversarial Reprogramming for Time Series Feature Classification in Ball Bearings’ Remaining Useful Life Classification

Author:

Bott Alexander1ORCID,Schreyer Felix1,Puchta Alexander1ORCID,Fleischer Jürgen1

Affiliation:

1. wbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany

Abstract

Standard ML relies on ample data, but limited availability poses challenges. Transfer learning offers a solution by leveraging pre-existing knowledge. Yet many methods require access to the model’s internal aspects, limiting applicability to white box models. To address this, Tsai, Chen and Ho introduced Black Box Adversarial Reprogramming for transfer learning with black box models. While tested primarily in image classification, this paper explores its potential in time series classification, particularly predictive maintenance. We develop an adversarial reprogramming concept tailored to black box time series classifiers. Our study focuses on predicting the Remaining Useful Life of rolling bearings. We construct a comprehensive ML pipeline, encompassing feature engineering and model fine-tuning, and compare results with traditional transfer learning. We investigate the impact of hyperparameters and training parameters on model performance, demonstrating the successful application of Black Box Adversarial Reprogramming to time series data. The method achieved a weighted F1-score of 0.77, although it exhibited significant stochastic fluctuations, with scores ranging from 0.3 to 0.77 due to randomness in gradient estimation.

Funder

KIT-Publication Fund of the Karlsruhe Institute of Technology

Publisher

MDPI AG

Reference73 articles.

1. Maslej, N., Fattorini, L., Brynjolfsson, E., Etchemendy, J., Ligett, K., Lyons, T., Manyika, J., Ngo, H., Niebles, J.C., and Sellitto, M. (arXiv, 2023). The AI Index 2023 Annual Report, arXiv.

2. Petangoda, J., Deisenroth, M.P., and Monk, N.A. (2021). Learning to Transfer: A Foliated Theory. arXiv.

3. Elsayed, G.F., Goodfellow, I.J., and Sohl-Dickstein, J.N. (2018). Adversarial Reprogramming of Neural Networks. arXiv.

4. Tsai, Y.Y., Chen, P.Y., and Ho, T.Y. (2020). Transfer Learning without Knowing: Reprogramming Black-box Machine Learning Models with Scarce Data and Limited Resources. arXiv.

5. Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., and Varnier, C. (2012, January 23–25). PRONOSTIA: An experimental platform for bearings accelerated degradation tests. Proceedings of the IEEE International Conference on Prognostics and Health Management (PHM’12), Beijing, China. IEEE Catalog Number: CPF12PHM-CDR.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3