Extending Multi-Output Methods for Long-Term Aboveground Biomass Time Series Forecasting Using Convolutional Neural Networks

Author:

Noa-Yarasca Efrain1ORCID,Osorio Leyton Javier M.1ORCID,Angerer Jay P.2ORCID

Affiliation:

1. Texas A&M AgriLife Research, Blackland Research and Extension Center, Temple, TX 76502, USA

2. USDA Agricultural Research Service—Livestock and Range Research Laboratory, Miles City, MT 59301, USA

Abstract

Accurate aboveground vegetation biomass forecasting is essential for livestock management, climate impact assessments, and ecosystem health. While artificial intelligence (AI) techniques have advanced time series forecasting, a research gap in predicting aboveground biomass time series beyond single values persists. This study introduces RECMO and DirRecMO, two multi-output methods for forecasting aboveground vegetation biomass. Using convolutional neural networks, their efficacy is evaluated across short-, medium-, and long-term horizons on six Kenyan grassland biomass datasets, and compared with that of existing single-output methods (Recursive, Direct, and DirRec) and multi-output methods (MIMO and DIRMO). The results indicate that single-output methods are superior for short-term predictions, while both single-output and multi-output methods exhibit a comparable effectiveness in long-term forecasts. RECMO and DirRecMO outperform established multi-output methods, demonstrating a promising potential for biomass forecasting. This study underscores the significant impact of multi-output size on forecast accuracy, highlighting the need for optimal size adjustments and showcasing the proposed methods’ flexibility in long-term forecasts. Short-term predictions show less significant differences among methods, complicating the identification of the best performer. However, clear distinctions emerge in medium- and long-term forecasts, underscoring the greater importance of method choice for long-term predictions. Moreover, as the forecast horizon extends, errors escalate across all methods, reflecting the challenges of predicting distant future periods. This study suggests advancing hybrid models (e.g., RECMO and DirRecMO) to improve extended horizon forecasting. Future research should enhance adaptability, investigate multi-output impacts, and conduct comparative studies across diverse domains, datasets, and AI algorithms for robust insights.

Funder

The Food and Agriculture Organization of the United Nations

U.S. Department of Agriculture’s Agriculture Research Service

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3