Hydrogen from Renewables: A Case Study of Glycerol Reforming

Author:

Fasolini Andrea,Cespi DanieleORCID,Tabanelli TommasoORCID,Cucciniello RaffaeleORCID,Cavani FabrizioORCID

Abstract

Biomass is an interesting candidate raw material for the production of renewable hydrogen. The conversion of biomass into hydrogen can be achieved by several processes. In particular, this short review focuses on the recent advances in glycerol reforming to hydrogen, highlighting the development of new and active catalysts, the optimization of reaction conditions, and the use of non-innocent supports as advanced materials for supported catalysts. Different processes for hydrogen production from glycerol, especially aqueous phase reforming (APR) and steam reforming (SR), are described in brief. Thermodynamic analyses, which enable comparison with experimental studies, are also considered. In addition, research advances in terms of life cycle perspective applied to support R&D activities in the synthesis of renewable H2 from biomass are presented. Lastly, also featured is an evaluation of the studies published, as evidence of the increased interest of both academic research and the industrial community in biomass conversion to energy sources.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3