Photocatalytic Decomposition of N2O by Using Nanostructured Graphitic Carbon Nitride/Zinc Oxide Photocatalysts Immobilized on Foam

Author:

Kočí Kamila,Reli MartinORCID,Troppová Ivana,Šihor MarcelORCID,Bajcarová Tereza,Ritz Michal,Pavlovský Jiří,Praus PetrORCID

Abstract

The aim of this work was to deposit cost-effective g-C3N4/ZnO nanocomposite photocatalysts (weight ratios of g-C3N4:ZnO from 0.05:1 to 3:1) as well as pure ZnO and g-C3N4 on Al2O3 foam and to study their photocatalytic efficiency for the photocatalytic decomposition of N2O, which was studied in a home-made batch photoreactor under ultraviolet A irradiation (λ = 365 nm). Based on the photocatalysis measurements, it was found that photocatalytic decomposition of N2O in the presence of all the prepared samples was significantly higher in comparison with photolysis. The photoactivity of the investigated nanocomposite photocatalysts increased in the following order: g-C3N4/ZnO (3:1) ≈ g-C3N4/ZnO (0.45:1) ≤ g-C3N4/ZnO (2:1) ZnO < g-C3N4 < g-C3N4/ZnO (0.05:1). The g-C3N4/ZnO (0.05:1) nanocomposite showed the best photocatalytic behavior and the most effective separation of photoinduced electron–hole pairs from all nanocomposites. The key roles played in photocatalytic activity were the electron–hole separation and the position and potential of the valence and conduction band. On the other hand, the specific surface area and band gap energy were not the significant factors in N2O photocatalytic decomposition. Immobilization of the photocatalyst on the foam permits facile manipulation after photocatalytic reaction and their repeated application.

Funder

Grant Agency of the Czech Republic

Ministry of Education, Youth and Sports of the Czech Republic

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3