Author:
Tang Yongfu,Chen Teng,Guo Wenfeng
Abstract
Well-defined polyhedral Pd-Pt nanocrystals anchored on the reduced graphene oxide (rGO) are successfully synthesized via a facile and efficient surfactant-free solvothermal route. The formation mechanism is carefully illustrated via tuning the surface state of rGO substrate and the Pd/Pt ratio in Pd-Pt nanocrystals. rGO substrates with continuous smooth surface, which can offer continuous 2D larger π electrons, play important roles in the formation of the well-defined polyhedral Pd-Pt nanocrystals. Suitable Pd/Pt ratio, which determines the affinity between the rGO substrate and polyhedral Pd-Pt nanocrystals, is another important factor for the formation of polyhedral Pd-Pt nanocrystals. Due to the well-defined surface of Pd-Pt nanocrystals, rich corners and edges from polyhedral structure, as well as more exposed (111) facets, the low-Pt polyhedral Pd-Pt nanocrystals anchored on rGO, used as electrocatalysts, exhibit high electrocatalytic activity for oxygen reduction reaction with excellent methanol tolerance.
Funder
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献