Microwave-Assisted Furfural Production Using Hectorites and Fluorohectorites as Catalysts

Author:

Sánchez Vladimir,Dafinov Anton,Salagre Pilar,Llorca JordiORCID,Cesteros YolandaORCID

Abstract

It has previously been reported that the use of microwave heating, together with the presence of co-solvents, improves the efficiency of furfural production from biomass. Solid acid catalysts can be a good alternative to mineral acids, since they can prevent corrosion and can be reused. However, the formation of humines should be minimized. Several delaminated and fluorinated hectorites, with different types and strengths of acid sites, were synthesized and tested as catalysts for the production of furfural from commercial xylose and from an acid biomass extract of almond shells. A new methodology was developed to prepare crystalline fluorohectorite at 800 °C in just 3 h. The presence of F significantly increased the acidity strength in the protonated fluorohectorite (H-FH) taking into account its high ammonia desorption temperature (721 °C). Additionally, this sample had fourteen times higher total acidity by m2 than the reference H-βeta acid catalyst. H-FH was the most efficient catalyst at short reaction times (1 h) for the transformation of xylose to furfural under microwaves using toluene as co-solvent, regardless of whether the xylose was commercial (20% furfural yield) or an extract of almond shells (60% furfural yield). However, the acidity of the extract affected the fluorohectorite structure and composition.

Funder

European Regional Development Fund

Generalitat de Catalunya

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3