Hydroxyapatite Block Produced by Sponge Replica Method: Mechanical, Clinical and Histologic Observations

Author:

Scarano AntonioORCID,Lorusso FeliceORCID,Santos de Oliveira Pablo,Kunjalukkal Padmanabhan Sanosh,Licciulli Antonio

Abstract

Purpose: The grafting procedure for the anthropic ridges of jaws represents a surgical technique for increasing the bone volume to permit the placement of dental implants for oral rehabilitations. The aim of this study was to evaluate a hydroxyapatite (HA) porous scaffold produced via a sponge replica method for the treatment of maxillary bone defects in a human model. Methods: A total of thirteen patients were treated for sinus lifting in the posterior maxilla for a total of 16 defects treated with cylindrical HA Block. The experimental sites were evaluated by a 3D Cone Beam Computer Tomography scan (CBCT), and the histological analysis was performed after 3 months of healing. Results: After the 3 months healing period, the histological outcome of the investigation showed a high level of biological osteoconduction of the HA. Microscopical evidence of new bone formation was also observed in the central portion of the graft block. The samples were composed of different tissues: 39 ± 1% new bone, 42 ± 3% marrow space, 17 ± 3% residual HA Block and 4.02 ± 2% osteoid tissue were present. The new bone formation in the block was 8 ± 3%. Conclusions: The study findings support that HA porous scaffolds produced by sponge replica were effective for the treatment of maxillary bone defects in humans.

Publisher

MDPI AG

Subject

General Materials Science

Reference42 articles.

1. Maxillary and sinus implant reconstructions;Tatum;Dent. Clin. N. Am.,1986

2. Removal of a migrated dental implant from the maxillary sinus after 7 years: a case report

3. Maxillary Sinus Augmentation With a Synthetic Cell-Binding Peptide: Histological and Histomorphometrical Results in Humans

4. Grafting of the maxillary sinus floor with autogenous marrow and bone;Boyne;J. Oral Surg.,1980

5. Effects of demineralized freeze-dried bone allograft on gene expression of osteoblastlike MG63 cells;Carinci;Int. J. Periodontics Restor. Dent.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3