Novel Bicomponent Functional Fibers with Sheath/Core Configuration Containing Intumescent Flame-Retardants for Textile Applications

Author:

Maqsood MuhammadORCID,Seide GunnarORCID

Abstract

The objective of this study is to examine the effect of intumescent flame-retardants (IFR’s) on the spinnability of sheath/core bicomponent melt-spun fibers, produced from Polylactic acid (PLA) single polymer composites, as IFR’s have not been tested in bicomponent fibers so far. Highly crystalline PLA-containing IFR’s was used in the core component, while an amorphous PLA was tested in the sheath component of melt-spun bicomponent fibers. Ammonium polyphosphate and lignin powder were used as acid, and carbon source, respectively, together with PES as a plasticizing agent in the core component of bicomponent fibers. Multifilament fibers, with sheath/core configurations, were produced on a pilot-scale melt spinning machine, and the changes in fibers mechanical properties and crystallinity were recorded in response to varying process parameters. The crystallinity of the bicomponent fibers was studied by differential scanning calorimetry and thermal stabilities were analyzed by thermogravimetric analysis. Thermally bonded, non-woven fabric samples, from as prepared bicomponent fibers, were produced and their fire properties, such as limiting oxygen index and cone calorimetry values were measured. However, the ignitability of fabric samples was tested by a single-flame source test. Cone calorimetry showed a 46% decline in the heat release rate of nonwovens, produced from FR PLA bicomponent fibers, compared to pure PLA nonwovens. This indicated the development of an intumescent char by leaving a residual mass of 34% relative to the initial mass of the sample. It was found that the IFRs can be melt spun into bicomponent fibers by sheath/core configuration, and the enhanced functionality in the fibers can be achieved with suitable mechanical properties.

Funder

Operational Programme South Netherlands

Publisher

MDPI AG

Subject

General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3