Surface Roughness Effects on the Broadband Reflection for Refractory Metals and Polar Dielectrics

Author:

Cao LinaORCID,Sendur KursatORCID

Abstract

Random surface roughness and surface distortions occur inevitably because of various material processing and fabrication techniques. Tailoring and smoothing the surface roughness can be especially challenging for thermomechanically stable materials, including refractory metals, such as tungsten (W), and polar dielectrics, such as silicon carbide (SiC). The spectral reflectivity and emissivity of surfaces are significantly impacted by surface roughness effects. In this paper, we numerically investigated the surface roughness effects on the spectral reflectivity and emissivity of thermomechanically stable materials. Based on our results, we determined that surface roughness effects are strongly impacted by the correlation length of the Gaussian surface. In addition, our results indicate that surface roughness effects are stronger for the materials at the epsilon-near-zero region. Surface roughness effects are stronger between the visible and infrared spectral region for W and around the wavelength of 12 μ m for SiC, where plasma frequency and polar resonance frequency are located.

Funder

Air Force Office of Scientific Research

Publisher

MDPI AG

Subject

General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization of ceramic tiles coated with recycled waste glass particles to be used for cool roof applications;Construction and Building Materials;2023-09

2. Predicting the directional spectral emissivity for rough surfaces polished by sandpaper;Tribology International;2023-07

3. Modelling the optical characteristics of cylindrical and rough nanowires with silver nanoparticles;Lithuanian Journal of Physics;2023-04-06

4. Grand challenges in coatings, dyes and interface engineering;Frontiers in Coatings, Dyes and Interface Engineering;2023-04-03

5. ARTIFICIAL NEURAL NETWORKS FOR INTERPRETING SPECTRAL EMISSIVITY VARIATIONS ACROSS COLD-ROLLED AHSS COILS;Proceeding of Proceedings of the 10th International Symposium on Radiative Transfer, RAD-23 Thessaloniki, Greece, 12–16 June 2023;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3