Optimal Selection of Seed-Trees Using the Multi-Objective NSGA-II Algorithm and a Seed Dispersal Model

Author:

Nanos Nikos1ORCID,Garcia-del-Rey Eduardo2,Gil Luis3

Affiliation:

1. Department of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

2. Macaronesian Institute for Field Ornithology, 38001 Santa Cruz de Tenerife, Spain

3. Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingenieros de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Abstract

Optimal seed-tree selection during natural regeneration of shade-intolerant species requires ensuring an ample and uniform seed supply from residual trees with the smallest possible seed-tree density. Here, we propose a novel approach for seed-tree selection using the genetic algorithm. Data are derived from a 3-hectare even-aged stand of Pinus canariensis C.Sm. ex DC, comprising 364 mature trees and 103 seed-traps. Seeds were collected in 2007 and 2008. After constructing a seed-dispersal model for each seed-crop year, we employ the multi-objective non-dominated sorting genetic algorithm to identify the smallest seed-tree set that maximizes post-treatment seed supply and its spatial homogeneity. Optimal solutions range from a maximum of 68.4% to a minimum of 38.1% reduction in stand density, resulting in a 59.5% to 28% reduction in post-felling seed supply. The coefficient of variation of among-site seed-flux varies from 28% to 59.5%. Proposing a treatment involving the removal of 240 trees (65.9% stand-density reduction) and leaving 40 seed-trees per hectare, our findings provide insights into balancing the conflicting objectives of sufficient post-treatment seed supply at a minimum seed-tree density. This approach marks a departure from traditional practices, as the decision about which trees to cut is historically left to the discretion of field managers.

Funder

Cabildo Insular de Tenerife

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3