Adaptive Distribution and Vulnerability Assessment of Endangered Maple Species on the Tibetan Plateau

Author:

Zhang Huayong12,Sun Pengfei1,Zou Hengchao1ORCID,Ji Xiande3,Wang Zhongyu1ORCID,Liu Zhao2

Affiliation:

1. Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China

2. Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao 250100, China

3. Energy Conversion Group, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 6, 9747 AG Groningen, The Netherlands

Abstract

Climate change has had an almost irreversible impact on the distribution patterns of tree species on the Tibetan Plateau, driving some vulnerable species to the brink of extinction. Therefore, it is important to assess the vulnerability of tree species in climate-sensitive areas under the following three IPCC-CMIP6 scenarios: SSP126, SSP370, and SSP585. The MaxEnt model was used to predict adaptive distribution for one endangered (Acer wardii W. W. Smith (A. wardii)) and six vulnerable maple plants on the Tibetan Plateau under current and future conditions. We then evaluated their vulnerability using the landscape fragmentation index. Our results showed that the current adaptive areas of vulnerable maple species were mainly distributed in the southeast of the Tibetan Plateau. The dominant factors affecting adaptive areas were temperature annual range (BIO7) for Acer sikkimense Miq. and Acer sterculiaceum Wall.; annual precipitation (BIO12) for Acer cappadocicum Gled.; precipitation of driest month (BIO14) for Acer pectinatum Wall. ex G. Nicholson, Acer taronense Hand.-Mazz., and A. wardii; and subsoil clay fraction (S_CLAY) for Acer campbellii Hook.f. & Thoms. ex Hiern (A. campbellii) Under the three future scenarios, the adaptive areas of maple on the Tibetan Plateau area shifted to the northwest, and habitat suitability increased in the northwestern part of the adaptive areas. In the SSP370 scenario, all seven species showed an increase in adaptive areas, while certain species decreased in some periods under the SSP126 and SSP585 scenarios. The status of the endangered maple species is likely to be even more fragile under the three future scenarios. A. wardii and A. campbellii are more vulnerable and may face extinction, requiring immediate attention and protection. In contrast, the vulnerability of the remaining five species decreased. In conclusion, this study provides recommendations for conserving vulnerable maple species on the Tibetan Plateau. Our data support understanding the distributional changes and vulnerability assessment of these tree species.

Funder

National Water Pollution Control and Treatment Science and Technology Major Project

Discipline Construction Program of Huayong Zhang, Distinguished Professor of Shandong University, School of Life Sciences

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3