Affiliation:
1. College of Electronic Information and Physics, Central South University of Forestry and Technology, Changsha 410004, China
2. School of Computer Science and Engineering, Central South University, Changsha 410083, China
Abstract
In insecure communication environments where the communication bandwidth is limited, important image data must be compressed and encrypted for transmission. However, existing image compression and encryption algorithms suffer from poor image reconstruction quality and insufficient image encryption security. To address these problems, this paper proposes an image-compression and encryption scheme based on a newly designed hyperchaotic system and two-dimensional compressed sensing (2DCS) technique. In this paper, the chaotic performance of this hyperchaotic system is verified by bifurcation diagrams, Lyapunov diagrams, approximate entropy, and permutation entropy, which have certain advantages over the traditional 2D chaotic system. The new 2D chaotic system as a pseudo-random number generator can completely pass all the test items of NIST. Meanwhile, this paper improves on the existing 2D projected gradient (2DPG) algorithm, which improves the quality of image compression and reconstruction, and can effectively reduce the transmission pressure of image data confidential communication. In addition, a new image encryption algorithm is designed for the new 2D chaotic system, and the security of the algorithm is verified by experiments such as key space size analysis and encrypted image information entropy.
Funder
Excellent Youth Project of Hunan Provincial Department of Education
Hunan Key Laboratory of Intelligent Logistics Technology