Abstract
The implementation of vertical slot fishway (VSF) has been demonstrated to be an effective mitigation measure to alleviate extensive river fragmentation by artificial hydraulic structures such as weirs and dams. However, non-suitable flow velocity and turbulent kinetic energy significantly affect fish swimming behavior and, as a result, hinder such facilities’ performance. Therefore, this study’s main objective is to propose a new configuration of VSF that can allow the passage of different fish species under frequent variations of flow discharge. To achieve that objective several novel configurations of VSF were numerically investigated using the FLOW-3D® model. Namely, five variants of angles between baffles, four different pool widths, and another upgraded version of VSF by introducing cylindrical elements positioned after the opening behind the baffles were tested. Results show that smaller angles between baffles increase the Vmax and decrease the maximum turbulent kinetic energy (TKEmax); the opposite result was obtained when increasing angles between baffles. Namely, the Vmax was increased up to 17.9% for α = 0° and decreased up to 20.37% for α = 37°; in contrast, TKEmax decreased up to −20% for α = 0° and increased up to 26.5% for α = 37°. Narrowing the pool width increased the Vmax linearly; nevertheless, it did not significantly affect the TKEmax as the maximum difference was only +3.5%. Using cylinders with a large diameter decreased the Vmax and increased TKEmax; in contrast, using cylinders with smaller diameters further reduced the Vmax velocity inside the pool while increasing the TKEmax. However, in the case of cylinders, the dimension of the recirculation depended on the configuration and arrangement of the cylinder within the pool. Overall, the maximum velocity was reached at near 77% of the water depth in all cases. Finally, solution-oriented findings resulted from this study would help water engineers to design cost-effective VSF fishways to support the sustainable development of hydraulic structures while preserving aquatic biodiversity.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献