Multiscale Interactions between Local Short- and Long-Term Spatio-Temporal Mechanisms and Their Impact on California Wildfire Dynamics

Author:

Afolayan Stella1ORCID,Mekonnen Ademe2ORCID,Gamelin Brandi3,Lin Yuh-Lang2

Affiliation:

1. Applied Science & Technology Ph.D. Program, North Carolina A & T State University, Greensboro, NC 27411, USA

2. Department of Physics, North Carolina A & T State University, Greensboro, NC 27411, USA

3. Environmental Science Division, Argonne National Laboratory, Lemont, IL 60439, USA

Abstract

California has experienced a surge in wildfires, prompting research into contributing factors, including weather and climate conditions. This study investigates the complex, multiscale interactions between large-scale climate patterns, such as the Boreal Summer Intraseasonal Oscillation (BSISO), El Niño Southern Oscillation (ENSO), and the Pacific Decadal Oscillation (PDO) and their influence on moisture and temperature fluctuations, and wildfire dynamics in California. The combined impacts of PDO and BSISO on intraseasonal fire weather changes; the interplay between fire weather index (FWI), relative humidity, vapor pressure deficit (VPD), and temperature in assessing wildfire risks; and geographical variations in the relationship between the FWI and climatic factors within California are examined. The study employs a multi-pronged approach, analyzing wildfire frequency and burned areas alongside climate patterns and atmospheric conditions. The findings reveal significant variability in wildfire activity across different climate conditions, with heightened risks during specific BSISO phases, La-Niña, and cool PDO. The influence of BSISO varies depending on its interaction with PDO. Temperature, relative humidity, and VPD show strong predictive significance for wildfire risks, with significant relationships between FWI and temperature in elevated regions (correlation, r > 0.7, p ≤ 0.05) and FWI and relative humidity along the Sierra Nevada Mountains (r ≤ −0.7, p ≤ 0.05).

Funder

National Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3